報(bào)告題目:A Partially Feasible Jacobi-type Distributed SQO Method for Two-block General Linearly Constrained Smooth Optimization
報(bào) 告 人:簡(jiǎn)金寶
報(bào)告時(shí)間:2025年3月28日下午4點(diǎn)
報(bào)告地點(diǎn): 蓮花街校區(qū)惟德樓315會(huì)議室
報(bào)告人簡(jiǎn)介:

簡(jiǎn)金寶,西安交通大學(xué)理學(xué)博士學(xué)位,廣西民族大學(xué)二級(jí)教授,博士生導(dǎo)師。
學(xué)術(shù)研究:長(zhǎng)期從事“最優(yōu)化理論方法及其在電氣工程中的應(yīng)用”研究;先后主持7項(xiàng)國(guó)家自然科學(xué)基金項(xiàng)目(4項(xiàng)面上),3項(xiàng)廣西自然科學(xué)基金重點(diǎn)項(xiàng)目和10多項(xiàng)省級(jí)項(xiàng)目。2000年以來(lái),以第一作者或第一通信作者身份在高質(zhì)量期刊上發(fā)表研究成果80多篇,如《Journal of Scientific Computing》、《IEEE Transactions on Power Systems》、《European Journal of Operational Research》、《Computational Optimization and Applications》、《Journal of Optimization Theory and Applications》、《Applied Energy》、《中國(guó)科學(xué)·數(shù)學(xué)》和《中國(guó)電機(jī)工程學(xué)報(bào)》等。
獲獎(jiǎng)與榮譽(yù):主持完成的4項(xiàng)科研成果先后獲得省級(jí)科學(xué)技術(shù)獎(jiǎng)二等獎(jiǎng),享受?chē)?guó)務(wù)院政府特殊津貼(2007),“全國(guó)教育系統(tǒng)先進(jìn)工作者”(2009),廣西壯族自治區(qū)“優(yōu)秀專(zhuān)家”(2006第五批,2018年第九批)。
學(xué)術(shù)兼職: 中國(guó)運(yùn)籌學(xué)會(huì)第十二屆理事會(huì)副理事長(zhǎng)(2024.10-),中國(guó)運(yùn)籌學(xué)會(huì)數(shù)學(xué)規(guī)劃分會(huì)副理事長(zhǎng)(2019.05-),廣西運(yùn)籌學(xué)會(huì)第一屆理事會(huì)理事長(zhǎng)(2011.11-),《計(jì)算數(shù)學(xué)》和《系統(tǒng)科學(xué)與數(shù)學(xué)》等高質(zhì)量核心期刊現(xiàn)任編委
報(bào)告內(nèi)容簡(jiǎn)介:This talk discusses a class of two-block smooth large-scale optimization problems with both linear equality and linear inequality constraints, which have a wide range of applications, such as economic power dispatch, data mining, signal processing, etc. Our goal is to develop a novel partially feasible distributed (PFD) sequential quadratic optimization (SQO) method (PFD-SQOM) for this kind of problems. The design of the method is based on the ideas of SQO method and augmented Lagrangian Jacobi splitting scheme as well as feasible direction method, which decomposes the quadratic optimization (QO) subproblem into two small-scale QOs that can be solved independently and parallelly. A novel disturbance contraction term that can be suitably adjusted is introduced into the inequality constraints so that the feasible step size along the search direction can be increased to 1. The new iteration points are generated by the Armijo line search and the partially augmented Lagrangian function that only contains equality constraints as the merit function. The iteration points always satisfy all the inequality constraints of the problem. The global convergence and iterative complexity of the proposed PFD-SQOM are obtained under appropriate assumptions. Furthermore, the rate of convergence such as superlinear and quadratic rates of convergence of the proposed method are analyzed when the equality constraint vanishes. Finally, the numerical effectiveness of the method is tested on a class of academic examples and an economic power dispatch problem, which shows that the proposed method is promising.
歡迎廣大師生參加!
數(shù)學(xué)與統(tǒng)計(jì)學(xué)院
2025年3月27日